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Abstract. In this paper the scattering of a plane longitudinal or transverse wave by a penetrable ellipsoid in an
isotropic and homogeneous elastic medium in the low-frequency region is examined. Using low-frequency
expansions the scattering problem is reduced to a sequence of potential problems. Explicit closed-form solutions for
the zeroth and first-order approximations are obtained. The solution of the problem was made possible by using an
analytical technique based on Papkovich-Grodski-Neuber potentials. The normalized scattering amplitudes and the
scattering cross-section are evaluated up to k3-order and k4-order terms, respectively.

1. Introduction

The scattering of a plane harmonic wave in linear elasticity is an exterior boundary-value
problem for the Navier equation, with known boundary conditions on the surface of the
scatterer and prescribed radiation conditions. The general theory of scattering of elastic
waves is very well exposed by Kupradze [1], who gave integral representations and radiation
conditions. Integral representations are also given by Pao and Varatharajulu [2]. Uniqueness
theorems in elasticity are proved by Wheeler and Sternberg [3]. Barratt and Collins [4] were
the first to give relations for the scattering cross-section. For the fundamental scattering
theorems we refer to [5].

The scattering of a longitudinal wave by a sphere was investigated for the first time by
Ying and Truell [6]. Einspruch, Witterholt and Truell [7] have also solved the corresponding
problem for transverse incidence. Lawrence [8] used an analytical technique to evaluate the
leading low-frequency term for the scattering cross-section of an ellipsoid. Results for the
cases of the rigid scatterer and the cavity for a longitudinal or transverse incident wave have
also been presented in [9, 10, 11]. Results about the low-frequency scattering theory for a
penetrable body are given in [12]. Estimates for the accuracy of the coefficients in the
low-frequency expansion are given by Jones [13].

In this paper, the scattering of a plane harmonic elastic longitudinal or transverse wave by
a penetrable scatterer of ellipsoidal shape is examined. The boundary conditions require that
on the surface of the scatterer the displacement and the traction fields have to be continuous.
Using expansions in the low-frequency region, the wave problem is reduced to a sequence of
potential problems, which by means of Papkovich potentials for the displacement fields can
be solved recursively. The zeroth as well as the first-order approximation of the solution are
obtained in closed form. Many technical difficulties, which reflect the lack of symmetry of
the ellipsoidal shape, appear in every step of this work. In order to overcome these
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difficulties we used a technique based on Papkovich-Neuber-Grodski potentials and their
interdependence. The proposed technique is applicable to the determination of all coeffici-
ents in low-frequency expansions but, as expected, the calculational efforts increase very
rapidly with the order of the approximation field. A similar (but simpler) technique was
already used for the case of the rigid scatterer [10] and the case of the cavity [11].

The normalized spherical scattering amplitudes and the scattering cross-section are
evaluated. This task is reduced to the calculation of certain surface integrals over the surface
of the scatterer. The first nonvanishing term of the scattering amplitudes is proportional to
the third power of the wave number, while for the scattering cross-section the leading term is
proportional to the fourth power of the wave number. The special geometrical cases that
correspond to degenerate ellipsoids, such as the sphere, the prolate and the oblate spheroid,
the needle and the disc, as well as some physical considerations are also discussed.

2. Statement of the problem

We assume that a plane harmonic wave uin e -i "' propagating in an infinite, homogeneous
isotropic elastic medium V with Lam6 constants Al, ,/l and mass density p, is scattered by a
penetrable ellipsoidal body V2 with Lam6 constants A2, /x2, different from Al, Jul, and mass
density P2 . Suppressing the harmonic time-dependence exp{-iwt}, where w is the angular
frequency, the incident wave takes the form

ik r ik kr

Uin = e or u= eik (1)

for a longitudinal and a transverse wave respectively, where k is the propagation unit vector,
6 is the polarization unit vector, 6 -k = 0 and kp, and k,l are the wavenumbers in V, of the P
and S wave, respectively.

The scattered field u as well as the incident wave satisfy the time-independent Navier
equation of dynamic elasticity,

c2 Av + (C2 -c2)V(V ·v) + o 2v = (2)

where cp, c, are the phase velocities for P and S waves, respectively, and v is the
displacement field. The scattered field also satisfies the well-known Kupradze radiation
conditions [1].

The boundary conditions on the surface S of the penetrable ellipsoid are

ul(r') = u 2(r') , T()ul(r') = T(2)u2 (r') , r' E S, (3)

where ui, i = 1, 2, are the total displacement fields for the spaces V and T(') are the
surface-stress operators which are given by the expression

T(') = 2fi V + AiV + ifi x V (4)

and fi is the unit normal on S with direction from V2 to VI.
The solution u of the above problem has the integral representation [12]
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ul(r)= u"(r) + 4 1 2 c o fu 2(r). (')(r, r) dv(r)

+c(c, - C2 - C2(C 2(r') *V l )(r, r') dv(r')2

Csl 2

+ 1 f u 2(r')[ T()- )] T ')(r, r') ds(r')} r V1, (5)

where the index r' means calculations with respect to the variable r' and p(1)* is the
fundamental dyadic for kp = k which is the solution of the equation

[cA + - : . = -[CSr. + ( - c)Vr(Vr,) + W (r, r') = -4ir-(r - r')D. (6)

is the identity dyadic and is the Dirac measure concentrated at r.
The normalized scattering amplitudes for the case of the penetrable scatterer are given by

the equations [12]

ik32 2 kpli2rl
ikp(cp -- CP2 ) -ikp r' '

gr(r k) = -- 2 2l 2) 2 u 2(r')e dv(r') -

+ .("1 j {u 2 (r')®fi'} (A1 - A2 ) + 2 ( Al - a 2) } e ds(r')

3 2
iks(S CS ) f-ikir'

g o (, - U (r') 0 e dv(r')

p,(i, C 47 -1 f2r'
+ (A- 2) {2{u 2(r') ®fi'): ( ) + {u 2 (r') x i) -) e 'ds(r'),

(8)

g,(f, ik 1 (- w ) j22 u2(r') ~ e dv(r')

-kP' C -ik -r'
+ {- ( 2{u 2(r') ®fi' } : ( S) - {u2(r') ®fi} O} e ds(r')

(9)

where the indicated double inner product is defined as

(a®b): (c®d) = (a d)(b c). (10)

The scattering cross-section is a measure of the disturbance caused by the scatterer to the
incident wave. The scattering cross-sections rp and oa corresponding to an incident P or S
wave are expressed by the equations [9]

op = k, f k 3l [k I3gr(g(i, + k3( g ) 2 + Ig (, k)12)] d() , (11)
L11PI 1 i

* The symbol "-" on top of a capital letter denotes a dyadic (second-rank tensor).

297



298 K. Kiriaki

O = ,,1 [k 31g(r, )l2 + k 3( go(e, k)12 + I g,(, )12)1 dn(r) (12)

where the integration is taken over the unit sphere.

3. Low-frequency expansions

We consider the total displacement fields, which can be expanded in a convergent power
series of the wavenumber,

u, (r = - 1- D(r) = D)(r) , (13)
n-0 n! n=O n!

· ,( ) ,(ik, 71)",l() (14)

where q4(l) is the n-th order coefficient for the exterior problem, (2) is the corresponding

coefficient for the interior problem, k, = k, and

2 A _ i
2 = J7i ......... (15)
i Ai + 2i '

The coefficients 4Q') satisfy the boundary-value problems

T2 Aq(i)(r) + (1 - Tr2)V(V' 4<()(r)) - n(n - 1)q4(n)_(r) 0 n = 0, 1,2,... 

(16)

~(Dl) (r ) 2)(r' ) T() = 2) 2 (r') , r' E S ,

where

1 for i= 1,
qi = CpCp2 for i=2. (17)

The integral representation for the n-th order coefficient e'(l) is

* {(l 1 +I p=0 +2· rl-p3 1 1 ,(r)=/ ci2 j 4 (P2)(r') n--

4(+ n- P1)+(n-p3) p -
r-rn-3{(n - (n -- - l + - ( d u (r ' )

2 C2 C2 -2 2
~ Cl(Cp2 - CS2) CP- CC -C)f2 I r

r-Jr-r' - p-(np-g 3). r-r' r-r' + J dv(r')

P (r[7Tn-'(n - p + 2) (Jr - ')(in21-f+4P(2)(~)[ r 1 1 ~/.t1 - /~2)(2T1
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r-r' r-r' r-r'2
It- r'I Ir- r'I r -I +(A - 2)(n - - 2)r + 2( +2 - /2)* ,1 , X 2 , + [(,-A,)(n- - - P+2 + 2(rI'- 2)

(T -P +21 i }] ds(r')} + an(k r) (18)

where

, for P-incident,

a =_ (19)
n for S-incident.

(T1

The asymptotic representation, as r- -, for the n-th order coefficient Q4(') can be derived
from the integral representation (18) if we omit the n-th term in the right-hand side sum,
which is of the order of 1/r.

The low-frequency expansions for the normalized scattering amplitudes are

c2-C2 ~ (iklT)n+3n () n ( f ( I) r r') f
~2Pgrk((r)(ir'k)=4 A-- ) dv(r')-i

47r(A1 + 2) n=O pn! -O )P 
(ik r )n+2 n n)1

47r(A, + 2/,) n=1 n ( 1 { (r')fi'}

: {(A - A2) + 2(, 1l - /2)?i)(i. r')P ds(r'), (20)

47/+ n=O nb-1 p~(n)(i f T ) <2-(r)..(ir)Pdv (2)

g(P ) + {4I27 (r') x n'} n }( *r')P ds(r') , (21)

2 2 E (-k )n+3 n n 1 p
42 1 Jn=O n!T 1 p=0 I dv(

/2 - Al (ik 1, 1,)n+2 (n)( 1)P f {2{i(2)
47A n=i n!r- T,

(22): (?® S°) - {qn, (r ' ) x fi'} }(r- r')P ds(r'). (22)

4. The Papkovich potentials in ellipsoidal geometry

It is well known that the solution of the Navier equation in linear elasticity has a
representation, due to Grodski-Papkovich-Neuber, involving one vector and one scalar
potential [14]. It is also well known that for the representation of the solution of the
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time-independent Navier equation in the absence of body forces only the vector Papkovich
potential suffices and, if we use both the vector and the scalar potentials, there is an
interdependence between them.

In our case the sequence of problems to which the scattering problem reduces, is described
by the inhomogeneous equation (16). But after long calculations it can be shown that the
nonvanishing part of the asymptotic expression of (18) satisfies equation (16), that is, it is a
particular solution of (16), and so we can write the solution 4)(')(r) of (16) as

4(l)(r) = G(')(r) + P( )(r) (23)

where P(') is the nonvanishing part, that is the particular solution of (16), and G"() = O(1 r),
for r-,o, is the solution of the homogeneous equation

2 AG()'(r) + (1 - )V(V. Gn()(r))= 0 (24)

with boundary conditions

G(l)(r ' ) = 4(2)(r') - P 1)(r'), r' E S,

(25)
T(O)G(1)(r') = T(2)4)(2)(r') - T(')P(1)(r') , r'E S.

Using Grodski-Papkovich-Neuber potentials [14] we can express the solution of (24)
through the representation

12G?1'(r) = A(l)(r) + 2 (r1 - 1)V(r Al)(v) + B(,)(v)), n = 0, 1, 2, ... , (26)

where A~l ) and B( ) are solutions of the homogeneous equations

AA = 0, AB( 1 =0, n=0,1, 2 .... (27)

Note that the introduction of the scalar potential B(1 ) in the representation (26) is not
necessary because of the homogeneity of the equation (24), [14]. We introduce this potential
because it constitutes a crucial point (as we will see later) of the technique which we use in
order to overcome the difficulties arising in the evaluation of the solution, and in order to be
able to reduce the calculation to a finite number of steps. This technique actually describes
how the low-frequency approximations can be evaluated in exact closed form by use of
harmonic functions alone.

In a similar way we can have a representation for the interior field (
2), using the

Papkovich potentials and the corresponding particular solution of the inhomogeneous
equation which is satisfied by the interior displacement field.

We assume, now, the scatterer of our problem to be a triaxial ellipsoid. So we have

3 2

E ' 1 , <a3 < a2<a, < + .
i=1 a i

In order to reflect the geometrical peculiarities of the scatterer we introduce ellipsoidal
harmonic functions. We can use harmonic functions because, as we have seen above, by
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using Papkovich potentials we reduce the evaluation of the solution of the scattering problem
to the evaluation of the coefficients of appropriately chosen expansions of harmonic
functions. The ellipsoidal harmonic functions form a complete system of eigenfunctions. We
give certain definitions about ellipsoidal harmonics in the Appendix. For details about
ellipsoidal harmonics, we refer to Hobson [15].

It is known that the functions

{En()Enm(v): n = 0, 1, ... , m = 1, ... ,2n + 1}, (28)

where E m are the Lam6 functions of the first kind, form a complete orthogonal set of surface
harmonics on the surface of the ellipsoid.

The vector and scalar Papkovich potentials A( ), B(') in the representation (26) have the
following expansions in terms of exterior ellipsoidal harmonics:

2k+1

Al)(r) = E E akl)n'ml(p, Fk , v), (29)
k=O m=l

2k+l

B(l)(r) = a b(1)n'mlm(p PV). (30)
k=O m=l

The particular solution P(')(r), as we can observe from its integral form given by (18), has
an expansion in terms of surface ellipsoidal harmonics up to degree n. Since on the surface of
the scatterer the displacement fields have to become equal, we conclude that the expansion
in terms of ellipsoidal harmonics for G(')(r) must also be up to degree n. This implies that all
the solid harmonics in G(n)(r) for k > n must have coefficients equal to zero. Hence, from
the vanishing of all these coefficients, the expansion for 4)(1 )(r) in terms of ellipsoidal
harmonics degenerates to a finite sum.

Using the relation

n 2k+1

V(r A ')) =A(' ) + > E (r -ak() )VF-(p, , v), (31)
k=O m=l

the representation (26) yields

n 2k+l
G(1) 2 (T+1 ) E (1)nm Fm )-(7 + 1)C Ca k uk (PIp , V)

2 k=O m=l

n 2k+1

+ (r2 -1) (r.a l )n'm + b" - ) ' )VIk (p, , ) (32)
2 1 k= _ k kk=O m=l

where

VFD(p, A, v) =(2k + 1)VEm(p, A, v)lm(p)

-(2k + 1) P k (33)
h- [E(p)]2 _ h p2

- 'h (33)

hp p _ P - (34)Ph p 2 h3
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is the square root of the ellipsoidal metric coefficient that corresponds to the variable p,
h2 = a2 - a3 and h = a - a2 are the squares of the two semifocal distances and p, the unit
curvilinear vector relative to the variable p, is given by

3
p= z Xi

P/ E 2 2 2 i i (35)
hp i=lP - a + a

where i i are the cartesian base vectors.
Inserting (32), (33) into (23) we conclude that

n 2k+m

4> (r) = ( + 1) E1 a(l (2k + )I-j(p)IE (p, , v)
k=O m=l

n 2k+l1

+ (r - 1) (r. a)nk )(2k + 1)I (p)VE (p, tP, v)
k=() m=l

n+l 2k+1

+ (2 - ) bl)nm (2k + 1)I (p)VEk (p, ,
k=O m=l

2 2 2 ~n 2k+1 (1)nm2Em(p, A, )
1(T2 - 1) P 2 { E E (r ak )(2k + 1) 

p - k=O m-l {

n+l 2k+l m m(P, , 

+ n 7 b(l)k(2k + 1 _p+ p(1) (r). (36)
k=O m=l k ({Ek(p))}

5. The zeroth and the first-order approximation of the displacement fields

We will now propose a technique to solve the zeroth and the first-order approximations of
the displacement fields in the low-frequency region. It has been proved by Jones [13] that
these terms give us enough information for the total field.

The zeroth-order approximation of the displacement field is the solution of the boundary-
value problem

ri2 A)(r) +(1- i)V(V qO)(r)) i=1,2,

4))(1(r) = 42)(r') , r' S

(37)
T(l)((0)(r') = T(2)4)22)(r'), r' E S

4()1(r) = a +( - )

where a is given by (19), while the first-order approximation is the solution of the boundary
value problem

ri AI('i)(r) + (1 -- Ti)V(V 'i)(r)) = 0, rE V , i = 1, 2,

(1)(1)(rf) = 4(2)(r'), r'E S,
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T(l)Q(1)(r ' ) = T(2)()(2)(r'), r' E S,

4()(r) = al(k r) + ( (38)

where a is given by (19).
Substituting in (36) for n = 0 we have the following representation of 4 1D')(r):

3 a(1)01

(°l)(r) = 2 ( r 2+l)a~ + )II P) + 2 (72-1)hlh2h3 ih .lm ^, x

1 {2 Ab()Oh + aOm hm
27 2_\1 21 2 2 \ (1)o,12 I__{

1 

- ( l -1 ) lC ml ) , + Y]

a m=l h kh h p

3bh
1 ) m

\ m

+ {E+(p)}2)1 (p , , v)J + a. ) ( (3

For the zeroth-order approximation of the interior field we have that

I 2 1 2 (2)0,1 1I2(r): = (T2 + ) 0 0 Ep, ,, V) (40)

The first-order approximations for the exterior and the interior fields have the representa-
tions

ID()(r) al hZ kihmEim(p, ,, v)

hihlh2h3h3 m m

3 ]
+4 2 (1)1, 2 (T (1) 3II(p)Em(p, V)

mm=h2 h(A -=1 h 1 1kk

2 3

m2 l (1 1 , a, v + 10b()'(A - a )(A - a2)(A -a p)
3=1 1 1 hm 2 1 2 3 2

+5hlh2 h3 [b(a)1 3I2(p) ,) + 0b)l'
5 I2(P) a)( a)(p, v)

+ 5hlh 2h3 [b2 1)14I2(p) 2 + b 1)1,5 I2(p) h2 ]El(p, ,
+ 2 (1)1, k +\ o )3

1 2 11 2 / P{hlh 2h3 E al ( 0k
2 2 _ r21 2 k h Ik 0

VP - -f - V k=lk
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E [ Q(l)ll + 3b()ln 1 (, ,
n=l hh2h3 (E,(p))2 (P, ' )

[ 5b 1) 3

2

+ E~(p) hth2h3(A-A') {a" 1 h l(A - al)

a(21) 2 h2(A a )+ a( 1' 3h3 (A a -, 2)}]E )E()

5b 1 1 ' 3 a2(E
1

ap
3 1

+ 2 + {a(1), l ( ,a

± (E2(p))2 h hl(E( p))2 + h 3(EA p))2 , )

12 2 2 13 3 )} 2
(1)1 , (1)1,2

+[ 5b
( 1 ' 3 ( 3 a 2ll ) 1E3(p, /, V)

(E5 (p))2 h ( h3 (E (p)) 2 + h2 (E2(p))2 2(P , )j (41)

and

(r) = (Ta + ){a'+ a ,(p, , )

2E h, E h,(E

+ 52 -1 3( haam Xk) ,3 E (P, , ) (42)
E552 + , h2(E(p))2

The expressions for 0D1')(r), )(1')(r) as given by (39), (41) are the sum of two parts. One can
be expanded in a finite sum of ellipsoidal harmonics, to which we will refer in the following
as the "cartesian" part of the solution, and another one which is multiplied by the factor
p * {(p 2 _ 2 )(p 2 _ v2 )}-1/2. This part can not be expressed in terms of a finite expansion of
ellipsoidal harmonics, because of the existence of this factor. We will refer to this part as the
"ellipsoidal" part of the solution. The expressions for DO2)(r), 4D2)(r) are only of "cartesian"
type. This difference between the forms of 4('l)(r) and ( 2 ) (r), n = 0, 1, is due to the fact
that (')(r), as solution of an exterior problem, is expressed in terms of second-kind
ellipsoidal harmonics, while 4(2)(r), as solution of an interior problem, involves first-kind
ellipsoidal harmonics.

Applying now the surface-stress operator to (), n = 0, 1, i = 1, 2, we observe that all the
terms at the two sides of the equation of the boundary condition that arise from the equality
of the traction fields, are multiplied by the factor a2a3 (a - (al - iv2)- The presence
of this common factor is due to the expression of the surface-traction operator in ellipsoidal
coordinates. Considering T(')(-n), we have that there are three types of terms. Terms
constituting the "cartesian" part, terms involving the factor p* {(p2 - 2 )(p 2 _ V2)}-

which constitute the "ellipsoidal" part and, finally, terms that contain the normal derivative
ap{p{(p2 _ 2 )(p 2 _ v2)} }, which form the "ellipsoidal-derivative" part. When we apply
the surface-stress operator to I(2)(r), we have terms of only one type which constitute the
"cartesian" part of T(2)4)(2)(r).
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In order to satisfy the boundary conditions we will employ the special forms for the
displacement and the traction fields. In this procedure we will use the interdependence of
Papkovich potentials.

We apply the first of the boundary conditions which must be satisfied by the displacement
vector in order to be continuous across the boundary. The first difficulty, which arises due to
the factor ({(p2 _ /12)(2 _ v2

)}-1/2, is that the "ellipsoidal" parts of )(0l)(r), i4)((r) do not
have finite expansions in terms of surface ellipsoidal harmonics. We choose to express the
b()nm n = 0, 1, in terms of a()nm in such a way that the term which is multiplied by the

factor j{(p2
_ 2)(p2 _ V2)}-1 12 vanishes on the surface of the scatterer. We have this

freedom because of the interdependence of Papkovich potentials. In this step we also use the
orthogonality of the surface ellipsoidal harmonics. In order to have continuity of the
interface traction, the second of the boundary conditions must be satisfied. At this step we
have no more freedom to let terms vanish independently because we have already estab-
lished the connection between the coefficients b and a. Based on the special form of the
traction fields, we choose to let vanish independently the "ellipsoidal" part and the
"ellipsoidal-derivative" part of T(.')¢')T(')Q('). After long calculations, using many rela-
tions connecting the ellipsoidal harmonics, we conclude that the relations which we obtain
from the vanishing of the "ellipsoidal" part of (P'), 4D(') are the same as those which we
obtain from the vanishing of both the "ellipsoidal" part and the "ellipsoidal-derivative" part
of T(1)' (1), T(')Q4(') at the surface of the scatterer. So the trick we have used to remove
independently the "ellipsoidal" and the "ellipsoidal-derivative" parts of the traction field
gives us relations consistent with the relations that are derived from the first of the boundary
conditions. Equating now the "cartesian" parts of T(')q('1), T(')4Q)( ) and T(2)402), T(2))( 2 ),
respectively, the only actually remaining parts, we obtain new relations between the
coefficients b and a. So, it is possible to calculate in a finite number of steps the two
approximations for the displacement fields. Here, we want to mention that there are terms in
the expressions for the traction fields which "seem" to belong to the "ellipsoidal" part or the
"ellipsoidal-derivative" part of the expressions and which are actually of "cartesian" type.
Many mathematical manipulations were needed in order to arrive at the correct characteriza-
tion of the terms.

As a conclusion, it is clear from the above discussion that the key of our method in order
to obtain the solution in closed form is the introduction of the scalar Papkovich potential.

Applying the proposed technique in order to solve the boundary-value problems for the
first two approximations, we conclude that

so')(r) = 4(2)(r) a0 , (43)

and for the first-order fields we have:

For the exterior displacement field

¢)(I)(r) = a, ok r + a, fk: (4)-,(p) -r

+ a, 9 k : {P(p) + Q4)2(P) rr}®) {(p2_/2)(p2_ 2)}1/2 (44)

where
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(4)B( p)= (+ I() () 1) I1PGk.® k + D h n
n=l - 2 2 h

ksn

72 3 ___ -AAcA--2 2a
1 1 J(A -)(A)(A -a a) 1

k=1 hk(A- A') (A - an)(A - ak)

_ ( al (2 2 jk n] 2nA'A'-- al)(A' -a2)(A' - a3) I2(}Jal x)x

(A1 - a-)(A'-1 c4) 2P~k 3 ~,,

[(a2+ a2), 612 I2(pG~+ IO'I271

+ (a2 + a3)I2(p)G 13 0 (xl 0x 3 + x3 iXl)

+ (a2 + a3)I2( p)G23 (x2 OX 3 + x3 Ox2)] (45)

(2 1)(p
2

- a ) 1 [(A- al)(A- a2)(A- a) 1
P(P): 2

(A'- a)(A' - a)(A' - a) 1 (46)
A' 

(46)

and

( 2 1)(p2 -) 1 (A-a a)(A- a2)(A- a) 1

2 1 ,2 2 1 1
(A'a- al)(A' - a2)(AOi - a) 1 G13 

- ( )(p 2 - a~l)L 3((p)) 2 Oxx 2 + (E4( p)) 2 3 G1 {X 3

+ (E(p))2 G2 3 2 ®X2 31 (47)

In relations (45), (46), (47) D is the determinant whose n, k-entry is given by the relation

dnk = {3, (2 k21(a,) _ a) + 3A 2kl(al )
k21

1 { A() (A - a)(A - a)(A - a3) 

(AA -
- (A - an)(A - ak)

t 22 2 2 2
A'(A' - al)(A' - a2)(A - a3)2

(A'-an)(A' - ak) 2(al)1

2(72 - 1)[21I -(A- A')22$] - 3 - (a, )r2 (A2 - 2t 2 k)} (48)

and k is a second-rank tensor given by
3

k = (-1)+n+ lDhn{2( L)n )nn +(Al - A22) (49)
n=l
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In (49) Dnk is the minor determinant of D corresponding to the n, k-entry. Further, Gnk is a
second-rank tensor given by the equation

Gnk = M (. (n i k + k ® n ) (50)
Mnk

and

Mnk = ala2a3 1l(a1 )l(al){ 2 + 21 -2 2) }

- (I1(a,) + Il(al)){/L2 + ,,(/ - L2T)} + ( -- 1)(/ 1 - tL2T2)(an + a,) 2 +k(a,)

+ ala2 a3(a In(a,) + akl(a,))*_2(Al - 272) + -' (51)
aa 2 a3

The interior displacement field

The interior displacement field is given by the relation

= a1a, (4)k *r (52)

where (4)R is a fourth-rank tensor,

(4)R= h 2h { { (21)]km+
1 2 h1)hQmk}=(k9i m2 m=1 k m hk

+ 22 M m0im} (53)

in which Mk is a second-rank tensor given by the relation

Mk h h {hkxk 2k + 3T 1 (a ) k

+ D E hn 1 2 2 2(al)+ i) hk [A(A-al)(A-a2)(A-a3) I(a)
n=1 h ( (A- a)(A- ak)

A'(A' - a2)(A' - a2)(A' - a2) ] (54)

(A - a 2)(A -- a3 2 (a,) 54

and Nkln is given by

Nk- 2n f'n("k- k(& 'n - 3I,(a,)Gnk+ 3I(a)Gkn} (55)2hlh 2h 3 (55)

6. Scattering amplitudes and scattering cross-section

From equations (20), (21), (22) the leading-term approximation for the normalized scatter-
ing amplitudes can be evaluated as k---> 0. Substituting the solution (02)(r) = ao and using the
relation
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f i 1 ®r' ds(r') = f Vr' dv(r') = V,0, (56)

we find

£ ik3 4 T f I(2)(r') 0O' ds(r') {(A1 - A2)0
grFr ( -+ 2/1 )

+21- p2)Pr} + 4(- ( - 1)V2(ao f i) + O(k (57)ik4·rr (57)* 2( AL - 92)' +47T - O

go~i~~(f =- A(2 - )ik 1r {f{ (gf r, k ) 4 1 1 { I (24 1{2q ) (r') (Q A, } : (g

+ {( 21 (r') x '}) S° ds(r')+ ik 0 1 _ 1V2(aO ) + O( k ) , (58)

g (r k) - ( 2 -P )ik 1 {(2)(r) A

{ (r2)) x 1 } o3 ds(r') + 4 (- 1)V 2(aO. ) + O(k 4) (59)

The leading-term approximation for the scattering cross-section follows from substitution of
(57), (58), (59) in (11), (12). After long calculations we obtain the relations

(i) for P-incidence

k43V 2 1 15(A-A 2
20( Al- A2)( - 2) 

+
8(j - 2)

%P- 12iT 5 (Al + 2, )2 

8(j 2 L1 )- )2}l : 12 + 2(A 2 - l) Ik k (3)II 2

A I4112

+ 4(ju - {) A 1+ + 4 11Ikok: (4)fi1121
5 {(Al +

2- 1 ) I
+

+ 12 ( 3 + 2)- - 1 V2 + O(k 6) (60)

where (3)R 1 is the triadic

= hih h3~~1 (61)
1- 2 {h (T2 + l)~km +h(T' -1)Nmk }ffk ff m (61)m=l k=l hk

with R 2 given by the relation

R2 = hh2h32 h Mm; (62)
m=l h
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(ii) for S-incidence

k2V 1 { 15(A, - A2)2 + 20(Al - 2)( - 2) + 8(g1, - 2)
2

I2 16 : R2212 +
/1 1

+ 4([1- 2)2 + 4}C(4)J1 2
5 (Al + 2, ) L

+ 1-- (rT3 + 2)- - 1) V 2 + O(k ) (63)

where the norm of a dyadic is defined as

3

Ilabl12= (abj)2 . (64)
i,j=l

7. Special shapes

Using the results concerning the most general symmetric shape of scatterer, the ellipsoidal
one, we can obtain as geometrically degenerate cases shapes like the oblate and prolate
spheroids and the sphere. In these cases there are no elliptic integrals and we can obtain
simpler formulae. Despite the simpler form of these formulae they are not so simple that
they can be used to draw direct conclusions about the behaviour of the scattered field, except
for the case of the sphere.

(i) Spheroids

For al a2 = a3 the ellipsoid degenerates to a spheroid, prolate when a, > a2 = a3 and oblate
when a < a2 = a3 . In this case the elliptic integrals are elementary and we have

I2 p - h 3

°O(P) = 3 |1 ,(ih ' (65)
h,1 h ( o ih(P) < a(6

I(p P)= 2 (I(p) pan) (67)

9 3 p
Il(p) 4h (I 3p2( - h)1 (68)

2() = I3() = (I(P) - h) ' (69)
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,3(p): =4(p) -2 (Ij(p) _ 3p 2 -2h(
12(P = 12(P) = 2h 4 (( 3p( p - h2) (70)

where

h3 cosh o - a2 cosh , >a 2 , (71)
{h 3 i sinh o 2 2 (71)N a2 -asinhco, < a2 

and (to, 0, p) are the spheroidal coordinates related to the cartesian coordinates (x,, x2 , x 3)
by

x, = pcos, E [0,+) ,

x2 = p 2-hsin cos , 0 E [O, ir],

x 3 = -hsin sinp, E [0, 2r).

For p = a, we obtain

[(a,) 21(a,)1 [ l-1 cosh-l al) al >a 2

{a|[ ()21 ( ) (72)
cos " ,, > 2

a2 , a2

and through (66)-(70) all the other elliptic integrals can be expressed as functions of the
ratio al/a2, whenever p = a,.

Having the values of he elliptic integrals we can substitute them in the corresponding
expressions and obtain the results for an oblate or a prolate spheroid.

The needle-shaped scatterer can be approximated by a prolate spheroid where a > a2 =

a3 . In this case

il 1 n2
a2 (a1 (73)a2(a

In the case where a, < a2 = a3, the oblate spheroid takes the shape of a circular disc and

jI~~~~~~~~~~~~ " ~~~~~~~(74)0 2a 2

(ii) Sphere

When a, = a = a3 = a the elliptic integrals can be evaluated immediately, and we have

I~o(p)= (75)
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It(p)= 13 , 1,2,3, (76)3 p

I2(p) = 5 n = 1,2, 3, 4, 5. (77)
5 p

We also have that p = r, = v = 0 and A = A' = a 2. In order to evaluate the undetermined
forms in the various expressions it suffices to approximate the sphere by, say, a prolate
spheroid setting a i = a(1 + E), > 0, a2 = a3 = a and obtain the case of a sphere in the limit
as e -* 0 +. Using this procedure we arrive after some calculations at the following forms for
the scattering cross-section:

(a) for P-incidence

=P =2( + 2)(- - ) V + 1 [( - 2 _)2( 1)201 3 P2 _ 1 ± 42 \1K12 2

4 4r (1 2 A/12 -1 ~) -1 ) + 15 T4(2 _ 1)2] (28 + 3e) 2V2

+ 1l5- [2T + 5]( - 1 (482 + 3 2 + 4)V2 + 0(K); (78)

(b) for S-incidence

Or I 1 (T31 + 2) -21 5 ) 1 ) V2 + O(K ), (79)
12 T \P 1 / 2 15T ( ( 2

6 = 2 (2
1 + /2l) [ + (L - , 2))] , (80)

32( A + 22)

2(2, + 2) 1 4i1 + 2!L2 + 3A2( 1 2)a, (81)

H(A` + 6Z)

2/,1(7,/ + 8/ 2) + 3A 1(3g1, + 2/12) (82)

8. Discussion

In this paper a systematic analysis of the low-frequency elastic scattering problem concerning
a penetrable ellipsoidal scatterer is presented. Using low-frequency techniques the scattering
problem has been transformed to a series of potential problems which can be solved
recursively. The first two low-frequency approximations of the displacement field have been
derived for the most general closed second-degree geometric figure, the triaxial ellipsoid, in
the case where waves are also excited within the scatterer, as well as the leading terms of the
normalized spherical scattering amplitudes and of the scattering cross-sections. It turned out
that the lack of rotational symmetry for the scatterer renders the problem very difficult to
solve in closed analytical form and a new calculational technique had to be introduced.

The physical interpretation of the mathematical problem analyzed in this work involves a
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plane harmonic elastic wave, longitudinal or transverse, that propagates in the three-
dimensional Euclidean space in the presence of a penetrable ellipsoidal scatterer. The
existence of such a discontinuity in the elastic properties disturbs the incident wave and as a
result waves of both types, longitudinal and transverse, are scattered from the obstacle
which, due to the linearity of the problem, are superposed on the existing incident wave. The
propagation vector of the incident wave, as well as the polarization vector, is arbitrarily
oriented with respect to the principal axes of the ellipsoid. The two problems of longitudinal
and transverse incident waves are analyzed simultaneously by introducing a generalized
polarization vector.

The real difficulty of the problem lies in the evaluation of the first-order low-frequency
approximation, because the zeroth-order approximation could be easily obtained and by
intuition. With the proposed technique all the difficulties arising from the complicated
equation, the rather involved boundary conditions and the ellipsoidal shape of the scatterer
have been overcome. The proposed technique is quite general and can be used for the
evaluation of the n-th order approximation of the displacement field, but obviously the
difficulty in the calculations increases very rapidly with the order of the approximation field.
From the analytical point of view it is clear that the penetrable scattering problem is much
harder than the rigid or the cavity problem; this is because there are two boundary
conditions that must be satisfied simultaneously and because of the complexity of the
surface-stress operator.

The leading-term approximation of the normalized spherical scattering amplitudes is of the
order of k3 , as k---, and depends on certain surface and volume integrals of ID. The
leading-term approximation of the scattering cross-section is of the fourth order of the
wavenumber. The evaluation of the leading term of the scattering cross-section by use of our
approach demands the knowledge of the coefficients 40 and (ID only and consequently the
calculation of the leading term of the scattering cross-section is realistic. If, in order to
evaluate the leading-term approximation of the scattering cross-section, the results of [4]
have to be used, the evaluation of the coefficients )i, i = 0, 1, 2, 3, 4, in the low-frequency
region will be needed. Considering the rapidly increasing difficulty in evaluating the
coefficients nD, our approach is very adequate and efficient.

The case of the cavity can be considered as a special case of a penetrable scatterer and the
solution can be obtained by taking A2 = /2 = P2 = 0 and putting the displacement field inside
the scatterer equal to zero. Our results are in agreement with existing results concerning the
ellipsoidal cavity [11].

From a physical point of view the solution of the described problem has applications to
composite materials. A composite material can be considered as a homogeneous isotropic
elastic medium containing inclusions. The modeling of these materials is of considerable
engineering importance because, by doing so, their mechanical properties can be obtained.
So, the solution of the examined scattering problem can be exploited in order to evaluate,
using certain energy methods, the elastic moduli of the material. Obviously, the results for
the scattering problems with ul = A2, vl 7 v2 and l f IA2 , = v2 (v is the Poisson ratio),
which are of special interest in applications, are special cases of the general problem which
we examine.

By the combination of geometrical and physical degeneration, many problems of practical
interest can be obtained as special cases of the problem that has been examined. Besides, the
results of this paper are expressed in a form suitable for numerical calculations which are
actually reduced to numerical evaluation of given functions. On the other hand, many
interesting results for special cases can be obtained in closed analytical form.
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Finally, we mention that our results can be used further in order to establish lower and
upper bounds for the surface-traction integral in the low-frequency region, that is, for the
leading-term approximation of the scattering amplitudes for a scatterer of general shape.
Such bounds are presented in [16] for the case of a rigid scatterer. Besides, based on our
results, especially the far-field pattern (the scattering amplitudes), the inverse scattering
problem can be investigated. It is well known that the knowledge of the solutions of the
direct problem for arbitrary domains is necessary in order to treat the inverse problem,
generally. But if we restrict ourselves to symmetric shapes, we can investigate methods for
the solution of the inverse problem based on the far-field pattern behaviour. For the inverse
scattering problem in acoustics, using a low-frequency far-field pattern approach, we refer to
[17].

Appendix: Ellipsoidal harmonics

The interior ellipsoidal harmonics of degree n are

EN'(p, , v) = En(p)En'(I)En(v) (A.1)

for m = 1, 2,. .. , 2n + 1, where E'n are the Lam6 functions of the first kind.
The exterior ellipsoidal harmonics of degree n are given by

F7 (p, /, V) = Fm(p)E'm( 1i)En(v) (A.2)

for m = 1, 2,. .. , 2n + 1, where F' are the Lam6 functions of the second kind. These are
related to Er(p) by the formula

Fm(p) = (2n + 1)Em(p)Im(p) (A.3)

where

I m n() du]V_ V2 h(A.4)
I= -P [Em(U)13 V u- h2 - h

are elliptic integrals.
The Lam6 functions E m up to degree two, which are used in this paper, are

Eo(u) = 1, (A.5)

En(u)= U2 - a+a[21, u = p, Ax, v, n=1,2,3, (A.6)

E'(u) = u2 - a + A, (A.7)

E2(u) = U2 - a1 + A' (A.8)

where

{ A' }3{ a-[ E (a4 aa2 a , (A.9)
Al 3 n- 1 [ 2 2.
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6-n(U) = u1 2 3

E6- (u) =E()E( 1, 2, 3. (A.10)

The cartesian forms of the interior ellipsoidal harmonics up to degree two are

hlh2 h3E'(p, , ) = h 
xn n = 1, 2, 3, (A.11)

hn "x

El(p, At, v) = (A-a )(A- a2)(A- a)( AX + 1 (A.12)

[E2(p,, v) = (A'- a2)(A' - a2)(A' - a3) A -a + 1), (A.13)

E2 (P, ,, v)= hlh2h 3 x 2x 3 - n =1, 2, 3. (A.14)
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